8yl (gwm g 4l

AN 40



=y

03ld g Wi Jolds WS oy ya5 @

private 5 public cods slo acdS L WIS lacl 6 pds o yiws S
constructor lg>13 glunew gods auls sloolanl b & G pmle @
constructor o5 las g yig ®

(static) oS 4 jaiswe b ools g oo ®



=9

WS cdl o o, sl sae N oaslel jo pew

0S8 Ol gy b SO e gl a5 lael

sl Jlode o eS o] slael olows g ), G bl )0 b aS s gio (g yuiomod
dd‘cb;ﬁ

AS ol 1y (69959 3l oads Cab o lade eSS Wl dliies 45T g Jlgsl 8 L



class

* Class
systematically arrange information and behavior into a meaningful entity

* Encapsulation

* The idea is that a program that uses a class should not have to account for
how that class actually works internally

* the program simply creates an instance of a class and calls the methods of
that class.
* two purposes of Encapsulation
e combine methods and data within a class
e control the accessibility of the methods and data



Define class

class Circle

{

Nt radius:

double Area()
{

return Math.PI * radius * radius;



Create object

class Circle

{

int radius;

double Area()

{

return Math.PI * radius * radius;

}
}
Circle c; // Create a Circle variable
¢ = new Circle(); // Initialize it
int i:

i = 42;



Object assignment

class Circle

{
int radius;
double Area()
{
return Math.PI * radius * radius;
}
}
Circle c;
c = new Circle();
Circle d;

d = ¢}



Controlling accessibility

* private (default) class Circle
* publi :
public private int radius;
public double Area()
{
return Math.PI * radius * radius;
}



Constructor

* When you use the new keyword to create an object, the runtime needs to
construct that object by using the definition of the class
* runtime grab a piece of memory
* fill it with the fields defined by the class
* invoke a constructor to perform any initialization required

* A constructor is a special method that runs automatically when you create
an instance of a class

* same name as the class
e cannot return a value

* Every class must have a constructor. If you don’t write one, the compiler
automatically generates a default constructor for you



Constructor - default

class Circle

{
private int radius;
public Circle() // default constructor
{
radius = 0;
}
public double Area()
{
return Math.PI * radius * radius;
}
}

10



Constructor - private

* If keyword public is omitted, the constructor will be private (just like
any other method and field).

* If the constructor is private, it cannot be used outside the class

* beyond the scope of the current discussion



Use constructor and public method

Circle c;
c = new Circle();
double areaOfCircle = c.Area();

12



Overloading constructors

class Circle

{
private int radius;
public Circle() // default constructor
{
radius = 0;
}
public Circle(int initialRadius) // overloaded constructor
{
radius = initialRadius;
}
public double Area()
X
return Math.PI * radius * radius;
}
}

13



Overloading constructors

class Circle

{
private int radius;
public Circle() // default constructor
{
radius = 0;
}
public Circle(int initialRadius) // overloaded constructor
{
radius = initialRadius;
}
public double Area()
X
return Math.PI * radius * radius;
}
}

Circle c;
c = new Circle(45);

14



Writing default constructor

* if you write your own constructor for a class, the compiler does not
generate a default constructor. Therefore, if you’ve written your own
constructor that accepts one or more parameters and you also want a
default constructor, you’ll have to write the default constructor

yourself.



static methods and data

e Consider class Math

 Math m = new Math();
* double d = m.Sqrt(42.24);

 double d = Math.Sqrt(42.24);
* Math.PI

* In C#, all methods must be declared within a class. However, if you
declare a method or a field as static, you can call the method or
access the field by using the name of the class.



Creating a shared field

* Defining a field as static makes it possible for you to create a single
instance of a field that is shared among all objects created from a
single class

* Nonstatic fields are local to each instance of an object



Example of shared field

class Circle

{

private int radius;
public static int NumCircles = 0;

public Circle() // default constructor
{

radius = 0;
NumCircles++;

public Gircle(int initialRadius) // overloaded constructor

{
radius = initialRadius;
NumCircles++;

18



Example of shared field

Console.WriteLine($"Number of Circle objects: {Circle.NumCircles}");

19



Creating a static field by using the const keyword

* By prefixing the field with the const keyword, you can declare that a
field is static but that its value can never change.

* you can declare a field as const only when the field is a numeric type (such as
int or double), a string, or an enumeration

class Math

{

public const double PI = 3.14159265358979;

20



static classes

* A static class can contain only static members

* The purpose of a static class is purely to act as a holder of utility
methods and fields



static using statements

 Whenever you call a static method or reference a static field, you
must specify the class to which the method or field belongs, such as
Math.Sqrt

e Static using statements enable you to bring a class into scope and
omit the class name when accessing static members

using static System.Math;
using static System.Console;

var root = Sqrt(99.9);
WritelLine($"The square root of 99.9 is {root}");

22



